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ABSTRACT

Magnetic reconnection preferentially takes place at the intersection of two separatrices
or two quasi-separatrix layers, which can be quantified by the squashing factor Q,
whose calculation is computationally expensive due to the need to trace as many field
lines as possible. We developed a method (FastQSL) optimized for obtaining Q and
the twist number in a 3D data cube. FastQSL utilizes the hardware acceleration of
the graphic process unit (GPU) and adopts a step-size adaptive scheme for the most
computationally intensive part: tracing magnetic field lines. As a result, it achieves a
computational efficiency of 4.53 million Q values per second. FastQSL is open source,
and user-friendly for data import, export, and visualization.

Keywords: Magnetic topology, Quasi-Separatrix Layers, GPU speedup

1. INTRODUCTION

Chromosphere flare ribbons often coincide with the footprints of separatrices or quasi-separatrix
layers (QSLs) (Priest & Démoulin 1995; Démoulin et al. 1996; Démoulin et al. 1997), which embed
the favorable sites for 3D magnetic reconnection, such as null points, separators (intersection of
two separatrices) and quasi-separators (intersection of two QSLs) of the magnetic field (Priest 2000;
Pontin 2011), where a large gradient of magnetic connectivity is present.

Corresponding author: Jun Chen
el2718chenjun@nju.edu.cn

ar
X

iv
:2

20
8.

12
56

9v
2 

 [
as

tr
o-

ph
.S

R
] 

 2
9 

A
ug

 2
02

2

http://orcid.org/0000-0001-6855-5799
http://orcid.org/0000-0003-3060-0480
http://orcid.org/0000-0003-4618-4979
http://orcid.org/0000-0001-6252-5580
mailto: el2718chenjun@nju.edu.cn
songyongliang


songyongliang


songyongliang


songyongliang

songyongliang


songyongliang


songyongliang


songyongliang


songyongliang

songyongliang




2 Zhang et al.

The squashing factor Q quantifies the connectivity change of magnetic field lines (Titov et al. 2002;
Titov 2007), Q is defined through a mapping from one surface S1, which a magnetic field line threads
at (x1, y1), to another surface S2, which the field line threads at (x2, y2);

Π
1 2

: (x1, y1)→ (x2, y2). (1)

The Jacobian matrix of differential mapping is expressed as

D
1 2

=

(
∂x2

∂x1

∂x2

∂y1
∂y2
∂x1

∂y2
∂y1

)
≡

(
a b

c d

)
. (2)

A full description of Q that considers the variance of the covariant metric tensor on S1 and S2 is
defined by Equations (11), (12) and (14) in Titov (2007). If S1 and S2 are the two boundaries of a
cuboid coordinated with the same Cartesian coordinate system, the value of Q at (x1, y1) is

Q (x1, y1) =
a2 + b2 + c2 + d2∣∣∣detD

1 2

∣∣∣ . (3)

∣∣∣detD
1 2

∣∣∣ is often replaced by its equivalence |Bn,1/Bn,2| for mitigating numerical error, where

Bn,1 = ( ~B · ~n)
∣∣∣
S1

(4)

is the component normal to S1 of (x1, y1), ~n is the normal unit vector of S1, the form is similar to
that of Bn,2. Since Titov et al. (2002) proved Q (x1, y1) = Q (x2, y2), Aulanier et al. (2005) expanded
the definition of Q into 3D space by

~B · ∇Q = 0, (5)

i.e. values of Q are invariant along a field line. Separatrices are located where Q = ∞, and QSLs
are located where Q� 2, the theoretical minimum of Q.

Along with tracing field lines, the twist number, a measure of how many turns two infinitesimally
close field lines wind about each other, can be calculated without much additional effort by (Equation
(16) in Berger & Prior (2006))

Tw =

∫
L

∇× ~B · ~B
4πB2

dl, (6)

where the integral range L is a segment of a magnetic field line.
In this work, we take advantage of GPU computing, which is more efficient and economic compared

to traditional CPU computing (Zwart 2020), to obtain the 3D distribution of Q and Tw with high
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efficiency. Feng et al. (2013) achieved an acceleration ratio of about 8 times by re-writing the model
into a GPU compatible form for the Magnetohydrodynamics (MHD) simulation of space weather.
Caplan et al. (2018) accelerated the Solar MHD code based on OpenAcc, the GPU version has about
3 times the efficiency of the CPU version, with a comparable cost level of hardware. Tassev &
Savcheva (2017) have implemented the computation of QSL with a GPU based on OpenCL, and
achieved the efficiency of obtaining a representative 3D QSL map within a few hours.

The rest of this paper is arranged as follows: in Section 2, the algorithm and program structure is
presented. In Section 3, we use the extrapolated potential field from a solar active region on 2010
Oct 16 19:00 UT (AR11112) and an analytical field from Titov & Démoulin (1999) (TD99 model) to
demonstrate the method. In Section 4, we present detailed benchmarks and comparisons for different
algorithms and computation architectures. In Section 5, we discuss and summarize the result.

2. METHOD

FastQSL is developed from the published source code http://staff.ustc.edu.cn/∼rliu/qfactor.html
(Liu et al. 2016), hereafter Code2016.

2.1. Calculation of Q

In the computation of Q, the essential and most computational consuming step is numerically
deriving magnetic field lines by solving the equation:

d~r (s)

d s
=

~B

B
, (7)

where s is the arc length coordinate of a field line, and ~r (s) is the coordinates function of the field
line.

To accurately map the field-line foot-points on a surface, one must solve the field-line equation
in high precision. In Code2016, Equation (7) is integrated by the classic RK4. We terminate the
integration where it goes outside the data cube, and then move one step back to get the field-line
coordinates at the boundary.
D
1 2

in Equation (2) is derived from the changes in the mapped footpoint coordinates with respect

to the footpoints of neighboring field lines. Q on a cross section can be calculated with the method
3 introduced in Pariat & Démoulin (2012) (hereafter Method I ), which introduces an auxiliary cross
section S0 (x0, y0) to obtain

D
1 2

=

(
∂x2

∂x0

∂x2

∂y0
∂y2
∂x0

∂y2
∂y0

)(
∂x0

∂x1

∂x0

∂y1
∂y0
∂x1

∂y0
∂y1

)
, (8)

and

(
∂x0

∂x1

∂x0

∂y1
∂y0
∂x1

∂y0
∂y1

)
=

(
∂x1

∂x0

∂x1

∂y0
∂y1
∂x0

∂y1
∂y0

)−1
=

(
∂y1
∂y0
−∂x1

∂y0

− ∂y1
∂x0

∂x1

∂x0

)/
|Bn,0/Bn,1|, (9)

http://staff.ustc.edu.cn/~rliu/qfactor.html
songyongliang
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where Bn,0 is the component normal to S0, that has a similar form as Equation (4). Method I is
used in Code2016.

Tassev & Savcheva (2017) published their code QSL Squasher (https://bitbucket.org/tassev/qsl
squasher/src/hg/) that achieved a high efficiency to identify QSLs, and Scott et al. (2017) gave a
detailed analysis of the code. Taking ~U, ~V as a pair of orthonormal unit vectors on S0, Scott et al.
(2017) then proposed a method of obtaining Q without the information of neighboring mapping
coordinates by solving

d{~r, ~U, ~V }
ds

= {
~B

B
, ~U · ∇

~B

B
, ~V · ∇

~B

B
}, (10)

and they proved that

Q =
~̃U2
1
~̃V 2
2 + ~̃U2

2
~̃V 2
1 − 2 ( ~̃U1 · ~̃V1) ( ~̃U2 · ~̃V2)

(Bn,0)2/(Bn,1Bn,2)
(11)

is equivalent to Equation (3), where

~̃U1 = ~U −
~U · ~n
~B · ~n

~B

∣∣∣∣∣
S1

, (12)

the form is similar for ~̃U2, ~̃V1, ~̃V2. In this paper, the method of Scott et al. (2017) based on Equation
(11) is referred to as Method II .

An alternative set of codes for calculating QSLs is published on https://github.com/Kai-E-Yang/
QSL (here after CodeYang), the first version still followed Method I and was firstly applied in Yang
et al. (2015). As of October 2018, CodeYang adopted Method II .

Different selections of S1, S2 will result in different values of Q even for the same start point on
S0 (see the example in Section 4.1 of Titov (2007)). In Code2016 and FastQSL, S1, S2 by Method
I are the boundaries where a field line terminates. Therefore Code2016 and FastQSL record these
boundaries for every field line. If one locally rotates S1, S2 to be perpendicular to the magnetic field
line, Equation (3) and Equation (11) will give Q⊥ (Titov 2007). Q⊥ removes the projection effect
on boundaries, therefore quantifies the property of volume QSL more precisely than Q does. The
reason that Q is still often used rather than Q⊥ is for its numerical simplicity. QSL Squasher and
CodeYang set S1, S2 to always be perpendicular to ~B, therefore providing Q⊥ only.

Method I requires tracing at least 4 neighboring field lines for the central difference of footpoint
coordinates, resulting in a numerical difficulty in cases where 4 field lines have different S1, S2, that
gives NaN in Code2016. Method I also has difficulty of accurately applying the formula of Q⊥ of
Titov (2007), especially on a polarity inversion line (PIL). Method II can give Q and Q⊥ directly
without introducing the error of coordinate difference by tracing Equation (10) alone, but solving

Equation (10) is less efficient than Equation (7) because of the need of calculating ∇ ~B
B

at every
step. In addition, since Q changes sharply around a separatrix, the high-Q positions could be inside
cells whose surrounding grids still have low values of Q, then these separatrix segments can not be

https://bitbucket.org/tassev/qsl_squasher/src/hg/
https://bitbucket.org/tassev/qsl_squasher/src/hg/
https://github.com/Kai-E-Yang/QSL
https://github.com/Kai-E-Yang/QSL
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captured. In contrast, with Method I , Code2016 traces field lines at refined grids, and implement
central difference of the mapping coordinates in terms of refined grids for Equations (8) and (9); here
the grid spacing is denoted as δ in Pariat & Démoulin (2012). Consequently, a separatrix can be
captured with refined girds, and characterized by an extremely high value of Q. Briefly speaking,
Method Ihas the advantage of locating the position of thin QSLs especially separatrices (except that
S1, S2 are not exactly same for 4 neighboring field lines), Method II has the advantage of giving
accurate values of Q and Q⊥. These characteristics are shown in Section 3 (Figure 2 and Figure
4). Since Q is mostly used to locate the position of QSLs and separatrices, Method I still has its
advantage. FastQSL provides the option of both methods.

2.2. Magnetic Field at the Input

For Code2016 and FastQSL, the input magnetic field is assumed to be in Cartesian grids. Code2016
requires uniform grid spacings, while FastQSL additionally supports general stretched (but still rec-
tilinear) grids. CodeYang and QSL Squasher can run in spherical coordinates, QSL Squasher can
run in stretched grids.

We assume that the input magnetic field ~B is known at every 3D Cartesian grid [xi, yj, zk]. Then
the ~B at ~r = (x, y, z) in a cubic unit cell [xi, xi+1]× [yj, yj+1]× [zk, zk+1] is interpolated by

~Binterp(x, y, z) =
1∑

m=0

1∑
n=0

1∑
p=0

ωx,m ωy,n ωz,p
~B(xi+m, yj+n, zk+p), (13)

ωx,0 =
xi+1 − x
xi+1 − xi

, (14)

ωx,1 =1− ωx,0, (15)

where ωy,n, ωz,p have similar forms as Equation (14) and Equation (15). For uniform grids, simply
flooring {x, y, z}/spacing is {i, j, k} in Equation (13). While for stretched grids, we apply a binary
search for the determination of i, j, k, which is much more time-consuming than the flooring, and the
final performance is reduced to 45%-80% (depends on settings at the input) by this determination.

2.3. Tracing Scheme

Code2016 and CodeYang utilizes the classic RK4 to solve Equation (7) and Equation (10). QSL

Squasher was updated to version 2.0 from January 2019, then the option of tracing scheme of Cash-
Karp method is removed and only Euler integration is retained, previous versions are not available
online currently. All of them use uniform fixed step-size (here after step).

FastQSL updates the tracing scheme with the 3/8-rule RK4 (Kutta 1901), which introduces a
smaller step error than the classic RK4, and additionally provides RKF45 (Fehlberg 1969) for further
acceleration. RKF45 calculates the difference between RK4 and RK5 of each step, tol is the maximum
tolerated difference, and the unit of tol is the original grid spacing. If the difference is larger than
tol, that is a failed-trial step, then the step-size is adjusted to a smaller value and repeat the tracing
step from the same point. If the difference is smaller than tol, RKF45 accepts this tracing step and
then adjust the step-size to a larger value according to the last difference and tol. A smaller value
of tol will result in a more precise output, but takes more computational resources.
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If grids are stretched, we adopt a self-adaptive fashion of step and tol in cells of different shapes
for a better performance. The scaling of step and tol in a cell are:

scaling = 1

/√(
Bx/B

xi+1 − xi

)2

+

(
By/B

yj+1 − yj

)2

+

(
Bz/B

zk+1 − zk

)2

, (16)

tolcell = tol× scaling, (17)

stepcell = step× scaling. (18)

tol and step here are dimensionless, tolcell and stepcell that actually applied in the cell have the
same unit as xi, yj, zk.

2.4. Code and Algorithm

Code2016 and FastQSL also provide Tw and field-line length, which are also extended to 3D by
remaining constant along a field line, like Equation (5). Different from Q-calculation, a low-level of
(even without) refinement of Tw is good enough for data analysis. FastQSL additionally provides
the coordinates of ending points of field lines, which had been used to locating flaring ribbons in an
MHD simulation (Jiang et al. 2021), and can help the calculation of slip-squashing factors (Titov
et al. 2009) if the flows at the boundaries are known.

FastQSL provides 2 sets of code. The first set is directly developed from Code2016 and still runs on
IDL (the reliance of SolarSoftWare of Code2016 is removed)+Fortran. This set is optimized in many
details. For example, it can be compiled by both gfortran and ifort while Code2016 is designed
only for ifort.

The 2nd set is accelerated by NVIDIA GPU. The flowchart of the GPU program with Method
I is shown in Figure 1, the differences from Method II is described in the caption of Figure 1. The
program is based on Python and CUDA/C. The major input of this program is the data-cube of the
3D magnetic field. The data is loaded with Scipy.io, which is capable of reading various file format
of data (e.g. .sav .mat and unformatted). For the preparation of GPU computing, the field data, the
parameters and the coordinate array of points to be calculated are then transferred to GPU-memory.
The most computational-power consuming part is to trace magnetic field lines, for which the RKF45

solver for is implemented in CUDA/C and compiled as a callable module TraceAllBline (as the
green blocks shown in Figure 1) by Cupy. The compiled module calculates magnetic field lines and
derives the foot-point mapping. Then the foot-point mapping results are transferred back to host-
memory for the calculation of Q. Also, with the magnetic field line computed in TraceAllBline,
Tw can be simply derived with Equation (6). After the calculation, Q and Tw are visualized with
matplotlib (for 2D) and pyvista (for 3D).

Since the server of http://staff.ustc.edu.cn/ will stop after September 2022, the first set will be
updated at http://github.com/el2718/FastQSL. For the second set, the source code, demo example,
and document of the method implementation is online available at https://github.com/Pjer-zhang/
FastQSL.

3. RESULTS

We apply FastQSL to 3 common scenarios of magnetic field analyzing: (1) a potential field extrap-
olated from a solar active region; (2) an analytical quadrapole field; (3) a flux rope from a TD99
model. These magnetic fields are used to demonstrated and benchmark FastQSL.

https://fortran-lang.org/
http://python.org/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.scipy.org/doc/scipy/reference/io.html
https://cupy.dev/
https://matplotlib.org/
https://www.pyvista.org/
http://staff.ustc.edu.cn/
http://github.com/el2718/FastQSL
https://github.com/Pjer-zhang/FastQSL
https://github.com/Pjer-zhang/FastQSL
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TraceAllBline

Compute Foot 
point mapping3D Magnetic

field data
(in storage)

 compiled as a module

TraceBlineAdaptive.cu

Kernel code trace 
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main.ipynb

load data
into GPU 3D QSL

(in CPU
memory)

3D Magnetic 
field data

(in GPU memory)

Input configs and
parameters 

(in GPU memory)

Informations of 
mapping points

(in GPU memory)

Array of
coordinate points
(in GPU memory)
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Compute 
QSL

CPU procedure

GPU procedure

main.ipynb

Visualize 
data

Data

Figure 1. The flowchart of GPU program with Method I in FastQSL. For Method II , the words in the
upper part of the green blocks should be “TraceBlineScott.cu” and “TraceBlineScott”, and the block of
“QCalc” is unnecessary.

3.1. An Extrapolated Potential Field

The first test is done with the potential field extrapolated from an active region (NOAA AR 11112)
on 2010 October 16 at 19:00 UT, which is the same field for analyzing “dome-plate QSL” in Chen
et al. (2020). Strictly speaking, it should be “dome-plate separatrices” with singular Q since there
is a null point (Titov et al. 2011; Scott et al. 2021). As shown by Figure 2(d), Q⊥ can not show any
footprints of bald patch separatrix (Titov et al. 1993; Titov & Démoulin 1999). For example, in the
region bounded by the black box in Figure 2(b), there is a footprint of bald patch separatrix on a
PIL between the green and the purple field lines (the neighboring field lines at two sides of a PIL
that is the footprints of a bald patch separatrix should depart with each other), which also satisfies
(Bx, By, 0) · ∇Bz|PIL > 0 (the purple lines in Figure 2(a)), while such topology is missing in Figure
2(d). As in the discussion above, the footprints of QSLs in Figure 2(d)(e) are much thinner than
that in Figure 2(b), even appear discontinuous at the thinnest points. Figure 2(c)(f) are calculated
with original grids. Figure 2(c) keeps the continuity of footprints, while Figure 2(f) shows much more
discontinuities than Figure 2(e), indicating that the method II requires a higher level of refinement
for displaying continuous separatrices.

With the significant improvement in efficiency, the 3D distribution of Q can be obtained with ease
within the timescale of minutes. Figure (3) shows the 3D magnetic topologies above the magne-
togram. As shown in Figure 3, the dome structure is well-represented as Figure 4 of Chen et al.
(2020).

3.2. An Analytical Quadrapole Field
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(e) sign(Bz) × log10(Q); Method II; factor=4

160 170 180 190 200 210 220
X(Mm)

160 170 180 190 200 210 220

(b) sign(Bz) × log10(Q); Method I; factor=4

Figure 2. Magnetic configuration of NOAA AR 11112 on 2010 October 16 at 19:00 UT. (a) PILs (cyan)
and the foot prints of bald patch separatrix (purple) superimposed on the magnetogram. (b-f) Map of QSL
at the photosphere, the method and the factor of refinement of grids (refined grid spacing = 1/factor×
original grid spacing) are denoted at the image title. The coordinates is same as that in Chen et al. (2020).
The green and the purple field lines present a double check of the existence of a bald patch in the black box
in panel (b).

In the first case, Q decays exponentially away from the null point (Pontin et al. 2016), there are still
some remnant of the high-Q region around separatrices can be captured by Method II . An analytical
quadrapole field can clearly present the shortage of Method II on capturing separatrices. The field is

~Bquadrapole(~r) =
4∑

i=1

qi
~r − ~ri
|~r − ~ri|3

, (19)

where ~r1 = (−1.5, 0, −0.5), ~r2 = (−0.5, 0, −0.5), ~r3 = (0.5, 0, −0.5), ~r4 = (1.5, 0, −0.5) are the
locations of 4 magnetic charges, and {q1, q2, q3, q4} = {1, −1, 1, −1} are the strengths of the mag-
netic charges. This analytical field is uniformly discretised for FastQSL, and the grid spacing is 0.02.
There are 4 sun spots on the photosphere (Figure 4(a)), and the length of field line can sharply jump
at some places (Figure 4(b)(e)), where must be separatrices. Method I can fully capture all these
separatrices (Figure 4(c)(f)). While Figure 4(g) that from Method II present a blank because all
calculated Q are below 10 in the region of Figure 4(g), the case is same if we plot log10(Q⊥). In
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Figure 3. 3D topology of the active region. The semi-transparent surface is the contour of Q = 5000. The
computation regime is 900 × 540 × 360 pixels, total computation time is 107s. The coordinate is same as
that in Chen et al. (2020).
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(a-d): cut from z=0

(e-g): cut from y=0

1 2 3 4 5log10(Q)

Figure 4. Magnetic structures of the quadrapole field. (a) Magnetogram. (b)(e) Field-line length map.
(c)(f) Map of log10(Q) from Method I . (d)(g) Map of log10(Q) from Method II .

Figure 4(c), in the area closed by the inner separatrices that labeled with “in” or in the area outside
of the outer separatrices that labeled with “out”, considering the symmetry of the magnetic field, the
field-line mapping (1) should be x2 = −x1, y2 = y1. According to Equation (3), the values of Q in
the area “in” and “out” should identically be 2. The real distribution of Q around these separatrices
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should like the Dirac Delta funtion. As the discussions of Section 2.1, since most refined girds are not
on the zero-thickness separatrices, Method II can not capture these separatrices (Figure 4(d)(g)).

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

x

y

Figure 5. Magnetic field lines of ~B = (x, −y, 0). Black curves are field lines, the blue circle is the mapping
surface of Q-calculation.

Another case that ~B = (x, −y, 0) has a similar distribution of Q. We set x2 + y2 = 1 as S1(θ, z),
S2(θ, z) of Q-calculation (Figure 5), where θ is the radian measure. For 0 < θ < π/2 (the case
is similar for π/2 < θ < 2 π), according to the symmetry of the magnetic field, the mappings are
θ2 = π/ 2 − θ1, z2 = z1, and all values of Q are 2 with Equation (3). Separatrices only appear at
θ = 0, π/ 2, π, 3π/ 2.

3.3. A TD99 model

A TD99 model at the setting of R = 110 Mm, d = 34 Mm, L = 55 Mm, a = 49.4 Mm, I = 4×1012 A,
I0 = 1.66 × 1012 A, q = 1014 T m2 is also tested. This analytical field is uniformly discretised, the
grid spacing is 3.04 Mm. This setting represents a hyperbolic flux tube (HFT) (Titov et al. 2002)
topology around the flux rope, 3D structure of the HFT and the 3D distribution of twist number are
presented by Figure 6.

4. BENCHMARK

A benchmark is presented for comparing the efficiency of FastQSL with published codes (i.e. QSL

Squasher, CodeYang and Code2016). The quality of resultant images and the time-consumed depend
on the choices of step of RK4 or tol of RKF45 and method. Images with different choices of parameters
are shown in Figure 7. There is a marginal value of step or tol for the quality of resultant image.
For a specific row, comparing horizontally, comparing with those resultant images with any lower
values, the image with the marginal value should not show any recognizable difference. And above
the marginal value, the difference is recognizable. In Figure 7, columns are labeled with “A, B, C,
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Figure 6. 3D structures of the TD99 model. Left: the purple semi-transparent surface is the contour of
Q = 5000, different types of magnetic field line are rendered in different colors. Right: the distribution of
twist number.

D” to mark an image that is ground truth, marginal ground truth, distinguishable and unlikeness.
The marginal value depends on the smoothness of the field. For example, comparing to column A
and B, most area in column C are satisfying, but some areas are not, one should check the quality of
image to make decision. The image quality is not very sensitive to the value of step or tol, which
the efficiency is sensitive to. For some analysis that do not require a high quality, even column D
can provide an acceptable result, and can achieve a very fast performance.

For Method I , if we fix the tracing parameter step or tol, we find the angle θ = arcsin(|Bn,0/B|)
between the magnetic field line and the cross-section S0 will affect image quality, with a smaller θ
giving poorer results. To mitigate this effect, our empirical formulas are:

step|S0 = max([step⊥ × |Bn,0/B|, stepmin]), (20)

tol|S0 = tol⊥ × |Bn,0/B|1.5, (21)

where step⊥, stepmin and tol⊥ are constants, max() is the operation of taking the maximum value.
When field lines are tangent to S0, Bn,0 → 0, introducing spurious high-Q structures. In order to
avoid this artifact, when |Bn,0/B| < 0.05, we locally rotate S0 so that it is perpendicular to the field
line, and traces 4 neighboring field lines at the new cross-section, and then calculate Q. Therefore,
the step or the tol at the input of FastQSL is for the perpendicular case, then adjusted by Equation
(20) or (21) for every field line. Since Code2016 fixes the step, it needs a small marginal step of 0.4
in Figure 7. For Method II , FastQSL always sets S0 to the perpendicular case, this adjustment is
not applied.

For Method II , there can be two strategies to calculate ∇ ~B
B

. One prepare a 3D array of ∇ ~B
B

at the
beginning by a second order finite difference, for example, the formula for uniform grids is

∂ ~B/B

∂ x
(xi, yj, zk) =

1

(xi+1 − xi−1)

[
~B(xi+1, yj, zk)

B(xi+1, yj, zk)
−
~B(xi−1, yj, zk)

B(xi−1, yj, zk)

]
, (22)
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⊥
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 0.1

Code2016

RK4,  step = 

Method I

 0.4  1.0  2.1

 0.5

FastQSL

RK4,  step =

Method II, 1

 4.0  8.0  12.0
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CodeYang

RK4,  step =

Method II, 2

 2.1  4.0  8.0
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Euler Integration,

step =

Method II, 2

A

 0.3

B

 1.0
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 2.1

D

1 2 3 4 5log10(Q)

Figure 7. The quality of Q-map with different codes, parameters and methods. The rows of QSL Squasher

and CodeYang show log10(Q⊥), other rows show log10(Q). Code and method are marked at the left of image,
the value of step or tol is in each panel. This test is done with the TD99 model, cut from a cross section
at height of 30.4 Mm, the unit of step and tol is the original grid spacing of magnetic field (corresponding
to 3.04 Mm). Column B presents images with a marginal value that without any indistinct area, comparing

to column A. The numbers following method II indicate the 1st or the 2nd way of calculating ∇ ~B
B .
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the form is similar for ∂ ~B/B
∂ y

(xi, yj, zk), ∂ ~B/B
∂ z

(xi, yj, zk). Then does an interpolation that is similar

to Equation (13). The other is to interpolate
~B
B

at the neighboring points of ~r like ~r±(0.001, 0, 0), ~r±
(0, 0.001, 0), ~r ± (0, 0, 0.001), then ∇ ~B

B
is given by central differences. the first way gives a smoother

distribution than the 2nd. As shown by the bottom 2 rows of Figure 7, the marginal tol by the first
way is 10−2.9 while that by the second way is 10−4.4, which means the image quality by the first way
is better with the same tol. The second way needs to calculate additional 6 values of

~B
B

, therefore

it is slower than the first way. But the first way asks additional storage for the 3D array of ∇ ~B
B

(3

times as the array of ~B occupied) while the second does not. CodeYang applies the second way. As
the gradient of Equation (13) can be analytically given in every cell, QSL Squasher applies a skill

that is mathematically similar as the second way, but the calculation of one value of ∇ ~B
B

consumes
the similar duration as the first way. The first set of FastQSL uses the first way, while the second set
applies the second way due to the limitation of GPU memory. Comparing with Method I (the row
of Code2016 of Figure 7), Method II (the top 2 rows of Figure 7) allows a much larger step.

Providing a completely impartial benchmark to all codes and both methods is extremely difficult,
we just show the benchmark at the marginal values (column B of Figure 7), to make a sense of
time-consumed. By using the TD99 model as an input, and calculating for the same region (the 3D
region of Figure 6) and at the same resolution, the efficiency is measured by the count of calculated
values of Q per unit time.

The original CodeYang can not accept a step > 1, because it extends only 1 ghost layer to
boundaries. We modified the code to have 10 ghost layers for the benchmark.
QSL Squasher allows adaptive mesh refinement, the possible locations of QSL are quickly identified

by Field-line Length Edge (FLEDGE) map, then only calculate Q⊥ at these locations, Tassev &
Savcheva (2017) claimed an order-of-magnitude speed-up with adaptive refinements. We firstly do
not apply adaptive refinements, directly set the grid resolution for Q⊥ that is same as other panels
of Figure 7, then achieve the marginal step of 0.3, and use this setting for the benchmark (Tabel
1). A larger step can shrink the resulting QSLs more significantly (Figure 7), even slightly affects at
the step of 0.3. We infer this artifact comes from the relatively large step error of Euler integration,
because our codes will also have such shrinking if we change the tracing scheme to Euler integration.
We also try the adaptive refinements, at the proper choices of the threshold of length jump for a
refinement and the maximum times of refinements for giving a satisfying image that likes column B
of Figure 7, the performance by GPU is 25 kQ/s, which is surprisingly lower than 189 kQ/s in Tabel
1, which is without the adaptive refinements. We guess that the gradient of field-line length in the
thick QSL could be small still, then the adaptive refinements can not improve the performance.

As shown by Table 1, Code2016 is faster than QSL Squasher and CodeYang. QSL Squasher is
slowed down by Euler integration, double-precision floating-point format, adaptability for stretched
girds, the way of calculating ∇ ~B

B
, and other potential aspects. CodeYang is slowed down by double-

precision floating-point format, the way of calculating ∇ ~B
B

and other potential aspects. Comparing
to Code2016, FastQSL achieves a significant speed-up. For the first set of FastQSL, compiled by
ifort is sightly faster than by gfortran. Traced by RKF45 is sightly faster than by RK4, but this
comparison may be not true for all kinds of magnetic field. For a highly twisted field, many failed-
trial steps could happen in that by RKF45, then by RK4 could be even faster. If traced by RK4, the
efficiency by Method II is sightly faster than that by Method I , the comparison is reversed if traced
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Code Processor Compiler Method Tracing scheme Parameter Performance

QSL Squasher
CPU

OpenCL
II , 2

Euler integration step = 0.3
29 kQ/s

GPU 189 kQ/s

CodeYang

CPU

gfortran
classic RK4

step = 2.1 27 kQ/s

Code2016 ifort

I

step = 0.4 191 kQ/s

FastQSL

gfortran

3/8-rule RK4
step⊥ = 3.0

749 kQ/s

ifort

854 kQ/s

II , 1
step = 4.0 907 MQ/s

RKF45

tol = 10−2.9 1.11 MQ/s

I tol⊥ = 10−3.2
1.43 MQ/s

GPU CUDA/C
4.53 MQ/s

II , 2 tol = 10−4.4 1.13 MQ/s

Table 1. The computation efficiency of different methods, measured as the capability of calculating Q per
second. In this test, the CPU is Intel core i9 10900K, the GPU is RTX 3070 OC. The version of gfortran
is 9.4.0, the version of ifort is 2021.6.0. The columns of “Processor”, “Compiler” and “Performance” are
only for the computation of QSL, others like IO, preprocessing, visualization are not involved. The numbers

following II indicate the 1st or the 2nd way of calculating ∇ ~B
B . The column of “Parameter” shows the

marginal value of a satisfied image in column B of Figure 7. QSL Squasher is tested with a smaller data
cube of the same TD99 due to its high requirement of memory.

by RKF45. For the second set of FastQSL that is optimized with GPU, it achieves the best efficiency
by Method I . If Q is calculated by Method II , since the second set uses the second way to calculate
∇ ~B

B
, it is even slower than the first set.

5. DISCUSSION AND SUMMARY

Comparing with Code2016, the computing efficiency increased by 24 times in this work. The
increase in computational efficiency majorly comes from two aspects: new computing architecture and
the improvement of algorithm. In the computational tasks of data inspection like QSL identification
and quantification, GPU acceleration can improve the efficiency of interactive inspection and help
to discover new features in data. In the computational tasks of simulation (Feng et al. 2013), the
massive parallel computation with GPU can help explore more parameter space with given time
and resource budget. Also, GPU computing is more environmentally friendly by reducing carbon
emission (Stevens et al. 2020; Portegies Zwart 2020).

To summarize, we developed a reliable method of calculating the squashing factor Q and twist
number in data cubes of magnetic fields on Cartesian grids. This method can achieve unprecedented
computation efficiency, with which one can obtain maps of Q and twist number within a few seconds
for 2D input and a few minutes for 3D input. The high efficiency can benefit the analysis of magnetic
topology, especially for the analysis of MHD simulations, which may require the computation of 3D
Q and twist number in a time series.
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